Dan Cooper ~ 01/22/19 ~ Portals, Time Travel & Teleportation ~ Hosts Janet Kira Lessin & Dr. Sasha Alex Lessin

Dan Cooper ~ 01/22/19 ~ Portals, Wormholes, Stargates, Time Travel & Teleportation & Other SSP Technologies ~ Stargate to the Cosmos ~ Revolution Radio, Studio B ~ Hosts Janet Kira Lessin & Dr. Sasha Alex Lessin ~ Producer Thomas Becker ~ 8 PM Eastern, 7 Central, 6 Mountain, 5 Pacific, 3 Hawaii time.

www.revolution.radio – Live and in the archives after the show.

Genetically engineered by Japanese scientists in 1952 to be a super soldier, and delivered through his surrogate mother on March 2, 1953 at Samson Air Force Base (now a closed USAFB but, still an open US Undersea Naval Base), Dan Cooper was born into one of the US Military’s Secret Space Programs (SSPs).

From 1955 to 1970, before he was deployed, he was trained by Japanese and Shaolin sword fighting instructors to sword fight, at various SSP underground military facilities throughout Japan and the United States. In 1970 he was deployed and served a “20 and back” (1970 – 1990) with a joint US and German (NAZI) Military SSP contingent known as Dark Fleet.  He engaged in numerous covert military operations, his primary function was dueling with swords. Cooper became a Niten Ichi-Ryu master (Japanese style sword fighter using two swords), and prevailed in numerous duels (tournaments and one on one challenges) throughout this galaxy and several adjoining galaxies.

Plasma Portal

Cooper was genetically engineered from Cossack (Jewish) stock by the Japanese geneticists that engineered him, he became the bane of his NAZI, US, and Draco, commanders because he often refused to follow their orders. In Cooper’s 20-year stint in the ICC, he refused to kill others and was brought into court martial court and forced to swear to kill for the ICC or die.  He said, “I’m going to follow orders.”  I spent 20 years in the 20 years and back program.  Cooper’s insubordinate and insolent demeanor towards his superiors not only endeared him to his brothers and sisters in arms but, it gained him real respect from the leaders of the worlds from where he bested their champions in mortal combat.

All during his 20 and back stint with Dark Fleet, Cooper constantly criticized and demeaned his superiors for their intractable stance opposing the release of advanced technologies to the general population of Earth. He vowed, upon his return, to personally affect the release of those advanced technologies. To ensure the success of that vow, Cooper made packs with several of the more powerful and more technologically advanced Warrior cultures to watch his back, which they did and continue to do. The ICC was/is well aware of the packs that Cooper made with these Warrior Cultures to protect him, and in morbid fear of them, wisely decided to release Cooper back to Earth in 1970, instead of executing him. As with all super soldiers, at the end of their 20 and back stint in the US Military SSP, upon Cooper’s return (honorable discharge) to Earth, in 1970, his memories of that period in his life were completely wiped.

Imbibed with an overwhelming desire to release suppressed technologies, Cooper entered College (Mt. San Antonio Jr. College, Walnut, CA) with a plan in mind to teach the Chinese how to defeat the US in business. He figured that they (the Chinese), who had been denied a seat at the table (with the Interplanetary Corporate Conglomerate; the ICC), were they to become financially able, might just do that; release, or facilitate the release, of suppressed technologies to the public. Eventually, in December 1985, Cooper graduated from the University of Colorado, at Denver, with two degrees; one in business and the other in political science. Knowing of Cooper’s plan to teach China how to do business, Ike’s people arranged for him to lecture both, the Chinese Finance Minister and then (Dec. 1985), Undersecretary of Defense, Xi Jinping. Cooper’s first question to China’s Finance Minister was; “How many Central Committee Members, out of the 25, are in favor of doing business?” The Finance Minister responded; “I’m the only one.” As Cooper explains it; “Solving the problem was more about convincing the Central Committee of China why they should do business rather than, how they should to do business.”

The Finance Minister credited Cooper with the development of modern China in his memoirs, which were publicly released throughout China. The second phase in Cooper’s sojourn to release suppressed technologies entailed the study and practice of engineering. He worked with Westinghouse Electric Company as an electronics technician from 1975 to 1976. He worked as an urban planner with various civil engineering companies from 1988 to 1994. The third phase in Cooper’s sojourn to release suppressed technologies entailed the study and practice of the law, which he did from 1994 to 2013. He attended law school for one year and then worked as a paralegal for various law firms and non-profit organizations. As Cooper explains it, “Without legal power, you can’t prevent the theft of your inventions.”

Cooper’s specialty in law is mandamus; suing the government. He is well known, throughout the United States, for his unique ability to consistently prevail in such actions.  After all that preparation, and ground-laying, in January 2014, Cooper was finally able to focus on personally inventing and patenting advanced technologies. Since then, he has filed six US patents for “free energy” generators, the latest of which was filed on December 9, 2018. Cooper describes his free energy generator patents as being for very low level “transitional” technologies. Though Cooper has independently derived all eight forces, he only discloses technologies employing the first five to the public. As Cooper explains it; “The world may OD from too much, too soon; and, no faction of the ICC is in favor of full disclosure, all at once.”

From https://en.wikipedia.org/wiki/Portals_in_fiction

The word “portal” in science fiction and fantasy generally refers to a technological or magical doorway that connects two distant locations separated by spacetime. It usually consists of two or more gateways, with an object entering one gateway leaving via the other instantaneously.

Places that are linked by a portal include a different spot in the same universe (in which case it might be an alternative for teleportation); a parallel world (inter-dimensional portal); the past or the future (time portal); and other planes of existence, such as heavenhell or other afterworlds. A parallel world, such as the Wood between the Worlds in C. S. Lewis‘s Chronicles of Narnia, may exist solely to contain multiple portals, perhaps to every parallel world in existence.

Portals are similar to the cosmological concept of a wormhole, and some portals work using wormholes.

Portals are often used in science fiction to move protagonists into new territory. In video games the concept is often used to allow the player to cover territory that has already been explored very quickly. A related book plot that is commonly used is the struggle to get to the opposite end of a new gate for the first time, before it can be used.

Film and television[edit]

In film and television, a portal is often portrayed using a ripple effect.

Other examples of portals include:

  • Buck Rogers in the 25th Century (TV series): Portals appeared in the series Buck Rogers in the 25th Century (1979–1981), where interstellar travel was facilitated by a network of portals.
  • Cowboy Bebop: In the anime Cowboy Bebop, hyperspace gates allow for faster—though not instantaneous—travel between the planets and colonies of our solar system.
  • Donnie Darko: In the movie Donnie Darko a portal appears on a cinema screen.[1] A fictional book within the film (Philosophy of Time Travel) serves as the basis for fan theories about time travelparallel universes and portals.[2]
  • Doraemon: A more lighthearted use of portals can be found in the Japanese comic and anime series Doraemon, where the Anywhere Door is used to travel from any point to another. This door looks like and operates like an ordinary household door.
  • The Final Countdown (film): In the movie The Final Countdown, the aircraft carrier USS Nimitz is transported via a portal to 1941, where its Captain must decide whether to intervene in the Pearl Harbor attack.
  • He-Man and the Masters of the Universe: In the cartoon series He-Man and the Masters of the Universe and She-Ra: Princess of Power the characters are able to travel through time and space by using magic space portals and time corridors. They can be used by characters with magic abilities, and are usually of a yellow colour. Sometimes they can have a pink or purple appearance. In some instances a portal allows travel from one place to another in just a few moments. In other cases (the She-Ra-Episode “Darksmoke and Fire”), the user travels through a separate dimension and can change his destination en route.
  • Gargoyles: Two types of portal existed in Disney’s mid-1990s Gargoyles animated fantasy adventure series; one was usable from any body of water while in a boat of any size, and took the traveler(s) to the series’ depiction of the enchanted island of Avalon through the reciting of the Latin-language “Avalon spell”,[3] while the other was through the use of the fictional, enchanted “Phoenix Gate” artifact, which took the traveler(s) to any time and place that the person that held the device was thinking of when they recited a different Latin-language spell to activate the artifact’s occult powers.[4]
  • Gravity Falls: In Gravity Falls, Dipper and Mabel’s Great Uncle Ford constructed a portal underneath the Mystery Shack. It was used by his twin brother Stan to bring him back from an unknown dimension.
  • Howl’s Moving Castle: In the Hayao Miyazaki film Howl’s Moving Castle, based on the novel by Diana Wynne Jones, Howl’s castle has a door with a four color dial above it, and each color setting causes a different location to appear on the other side of the door, only one of which is immediately outside the castle.
  • Jackie Chan Adventures: In the cartoon series Jackie Chan Adventures, eight demons were sealed away using portals to trap each of them in a different realm. The portals could be opened again. The demons were released but later recaptured and returned in the netherworld. A spell was used on each portal to seal it forever, ensuring that the demons could never escape again.
  • Jak and Daxter: “Warp gates” in Jak and Daxter are rings enclosing a rippling blue substance used for transportation.
  • The Legend of Korra: In The Legend of Korra, the two spirit portals, located in the north and south poles, connect the physical world and the spirit world, allowing passage to the spirit world without meditation. However, a new portal was created in the center of Downtown Republic City after Kuvira’s sprit energy weapon overloaded.
  • Lost in Space (film): The 1998 film Lost in Space featured a space-bound hypergate system. The premise of the film is that the Robinson family will pilot a spaceship to Alpha Centauri to construct a receiving hypergate, allowing instantaneous travel between Earth and Alpha Centauri.
  • Mighty Max: In the Mighty Max television series and toyline, the titular character Max receives a magical baseball cap capable of projecting wormhole-like portals that allow Max to teleport across time and space and even travel to alternate dimensions and the astral plane.
  • Monsters, Inc.: The animated film Monsters, Inc. involved portals that open through children’s closets. This enabled the inhabitants of the monster world to enter children’s bedrooms and cause them to scream. Children’s screams are the power source of the monster world, and are siphoned through the portals into containers for refinement. Each portal is an exact replica of a child’s wooden closet door in a metal frame, allowing a monster to enter that child’s room. Some portals have metal doors and open to counterparts in remote locations in the human world. The finale features a wild chase through a massive gallery of closet door portals, causing jumps between places such as Paris, Japan and Tahiti.
  • ReBoot: A portal in ReBoot, created by the villainous character Megabyte, displays a rippling event horizon.
  • Starcraft (series): The StarCraft series features warp gates that are similar in style and function.
  • Stargate Franchise: The Stargate franchise uses wormholes as one of the primary methods of travel between planets. Large rings are placed on, or in orbit around planets throughout the universe. When the travelers “dial” the address of their destination, a wormhole is formed between the two Stargates.[5]
  • Star Trek: The Next GenerationStar Trek depicted devices called “Iconian Gateways” with angular frames and ripple effects such as the one in the Star Trek: The Next Generation episode “Contagion“.
  • Star Trek: Voyager: In Star Trek: Voyager and the game Star Trek: Armada II, the Borg have a technology known as the transwarp conduit. The aperture of the conduit at the transwarp hub resembles the event horizon of a Stargate crossed with the wormhole effect created by the Stargate.
  • Star vs. the Forces of Evil: In the animated television series Star vs. the Forces of Evil, characters open portals to other dimensions using Dimensional Scissors.
  • Portals are prominent in the 1987–1996 Teenage Mutant Ninja Turtles cartoon, as a method of transportation between distant locations and even through time. The most famous portal of the series is inside Krang‘s Technodrome but from the third season, Donatello also develops a portal generator.
  • Transformers: In Transformers, the Decepticons built the Space Bridge, which serves a similar purpose. A large round ring built on Earth (lying flat) would create a subspace tunnel to a destination tower on Cybertron. One key difference in function was that matter was not broken apart for transport.
  • Treasure Planet: In Treasure Planet, the portal (also referred to as “a ‘big door’ opening and closing”) is an enormous energy doorway that allows practical, rapid travel between two distant locations anywhere in the universe. The spherical map (holographic projector) that led to Treasure Planet also worked as the portal’s control panel once plugged into a keyhole and would project an orbital list of locations. One touch on one of the projected destinations and the portal would instantly open a doorway to that destination, large enough for a ship to pass through. It is possible that the portal was built by the ancient alien race that created the map and the planet itself (which is actually a large, spherical mechanism composed of incredibly advanced technology).
  • Imaginationland: The Movie: In Imaginationland: The Movie, the boys are told of a portal into Imaginationland that had been built during the Cold War and is controlled by the government. The Pentagondecides to send a group of soldiers into Imaginationland through the portal.
  • My Little Pony: Friendship is Magic: In the fourth generation of My Little Pony, portals are often depicted as rifts through space and time, and can be opened by a being with powerful magic, or with specific powerful magical items (such as the Elements of Harmony). These portals can be used for transportation between universes (as is the case in the Equestria Girls series of My Little Pony); or can be used for banishment (as seen in the season 8 episode, Shadow Play[6][7], and in Equestria Girls: Rainbow Rocks)

Literature[edit]

In his Hyperion Cantos novel series, Dan Simmons imagines a network of portals called “farcasters” which connect most human-inhabited planets. The form these portals take can vary, and they may be opaque, completely transparent, or semi-transparent. The completely transparent variety is very commonly used and effectively turns all connected places into one giant WorldWeb where distance becomes almost meaningless. Some of the more opulent occupants may have houses where each room is built on a different planet, and some rooms themselves may be partially built in several different physical locations but be joined by farcaster portals to form one complete room.

Stephen Robinett’s book Stargate[8] (1976) revolves around the corporate side of building extra-dimensional and/or transportational stargates. In the novel, the stargate is given the name Jenson Gate, after the fictional company that builds it. Andre Norton‘s 1958 novel Star Gate may have been the first to use that term for such portals. The plot of Robert A. Heinlein’s Tunnel in the Sky (1955) uses a portal. Raymond Jones’ Man of Two Worlds (aka Renaissance) (1944) employs a portal that turns out to be a fraud.[9]

The Shi’ar, an extraterrestrial race introduced by Marvel Comics in 1976, also utilize a network of stargates. The Shi’ar utilize both planet-based stargates (for personal travel) and enormous space-based versions (equivalent to the Ori supergate and used as portals for spaceships), though both are usually depicted without any physical structure to contain the wormhole. They are used for travel across great distances.

In the His Dark Materials trilogy, Philip Pullman has characters use the ‘subtle knife‘ to carve a doorway from one world to another. CJ Cherryh‘s Morgaine series see the main characters travelling via ‘gates’ from world to world, closing them as they go.

Since the introduction of the stargate on the big screen other authors have referenced the stargate device. Authors Lynn Picknett and Clive Prince also write of The Stargate Conspiracy: The Truth About Extraterrestrial Life and the Mysteries of Ancient Egypt. The book details an alternative theory links the term stargate with Egypt’s past: Either the pyramid itself is a gateway to the stars (because of the shafts pointing to a star) or a construction of Heaven on Earth based on geographical location of the great and outlying pyramids (see: Orion).

From https://en.wikipedia.org/wiki/Stargate

Stargate is a science fiction media franchise based on the film written by Dean Devlin and Roland Emmerich. The franchise is based on the idea of an alien Einstein–Rosen bridge device (the Stargate) that enables nearly instantaneous travel across the cosmos. The franchise began with the film Stargate, released on October 28, 1994, by Metro-Goldwyn-Mayer and Carolco, which grossed US$197 million worldwide.[1][2] In 1997, Brad Wright and Jonathan Glassner created a television series titled Stargate SG-1 as a sequel to the film. This show was joined by Stargate Atlantis in 2004, Stargate Universe in 2009, and a prequel web series, Stargate Origins, in 2018. Also consistent with the same story are a variety of books, video games and comic books, as well as the direct-to-DVD movies Stargate: The Ark of TruthStargate: Continuum and Stargate: Children of the Gods, which concluded the first television show after 10 seasons.

In 2011, Stargate Universe, the last Stargate program on television, ended its run. Brad Wright announced that there were no more plans to continue the same story in further productions.[3] In 2016, comic publisher American Mythology acquired the rights to publish new Stargate Atlantis stories set within the established franchise canon. This was expanded in 2017 to include new Stargate Universe comics as well, resolving the cliffhanger that ended the show.[4][5] The predominant story arc thus ran on television for 15 years, including 17 seasons (354 episodes) of programming, and 8 comic book issues as of July 2017. However, a variety of other media either ignore this main continuity or resets it, while maintaining essential elements that define the franchise (mainly, the inclusion of a Stargate device). These include the 2002 animated series Stargate Infinity.

In 2017, the franchise was revived with the announcement of a new prequel web series, Stargate Origins.[6] Episodes premiered on a central “fan hub” for the franchise called Stargate Command,[7] with a first season of ten 10-minute episodes.

From https://en.wikipedia.org/wiki/Wormhole

wormhole (or Einstein–Rosen bridge) is a speculative structure linking disparate points in spacetime, and is based on a special solution of the Einstein field equations solved using a Jacobian matrix and determinant. A wormhole can be visualized as a tunnel with two ends, each at separate points in spacetime (i.e., different locations or different points of time). More precisely it is a transcendental bijection of the spacetime continuum, an asymptotic projection of the Calabi–Yaumanifold manifesting itself in Anti-de Sitter space.

Wormholes are consistent with the general theory of relativity, but whether wormholes actually exist remains to be seen.

A wormhole could connect extremely long distances such as a billion light years or more, short distances such as a few meters, different universes, or different points in time.[1]

Visualization[edit]

Wormhole visualized

For a simplified notion of a wormhole, space can be visualized as a two-dimensional (2D) surface. In this case, a wormhole would appear as a hole in that surface, lead into a 3D tube (the inside surface of a cylinder), then re-emerge at another location on the 2D surface with a hole similar to the entrance. An actual wormhole would be analogous to this, but with the spatial dimensions raised by one. For example, instead of circular holes on a 2D plane, the entry and exit points could be visualized as spheres in 3D space.

Another way to imagine wormholes is to take a sheet of paper and draw two somewhat distant points on one side of the paper. The sheet of paper represents a plane in the spacetime continuum, and the two points represent a distance to be traveled, however theoretically a wormhole could connect these two points by folding that plane so the points are touching. In this way it would be much easier to traverse the distance since the two points are now touching.

Terminology[edit]

In 1928, Hermann Weyl proposed a wormhole hypothesis of matter in connection with mass analysis of electromagnetic field energy;[2][3] however, he did not use the term “wormhole” (he spoke of “one-dimensional tubes” instead).[4]

American theoretical physicist John Archibald Wheeler (inspired by Weyl’s work)[4] coined the term “wormhole” in a 1957 paper co-authored by Charles Misner:[5]

This analysis forces one to consider situations… where there is a net flux of lines of force, through what topologists would call “a handle” of the multiply-connected space, and what physicists might perhaps be excused for more vividly terming a “wormhole”.

— Charles Misner and John Wheeler in Annals of Physics

Modern definitions[edit]

Wormholes have been defined both geometrically and topologically.[further explanation needed] From a topological point of view, an intra-universe wormhole (a wormhole between two points in the same universe) is a compact region of spacetime whose boundary is topologically trivial, but whose interior is not simply connected. Formalizing this idea leads to definitions such as the following, taken from Matt Visser‘s Lorentzian Wormholes (1996).[6][page needed]

If a Minkowski spacetime contains a compact region Ω, and if the topology of Ω is of the form Ω ~ R × Σ, where Σ is a three-manifold of the nontrivial topology, whose boundary has topology of the form ∂Σ ~ S2, and if, furthermore, the hypersurfaces Σ are all spacelike, then the region Ω contains a quasipermanent intrauniverse wormhole.

Geometrically, wormholes can be described as regions of spacetime that constrain the incremental deformation of closed surfaces. For example, in Enrico Rodrigo’s The Physics of Stargates, a wormhole is defined informally as:

a region of spacetime containing a “world tube” (the time evolution of a closed surface) that cannot be continuously deformed (shrunk) to a world line (the time evolution of a point).

From https://en.wikipedia.org/wiki/Time_travel

Time travel is the concept of movement between certain points in timeanalogous to movement between different points in space by an object or a person, typically using a hypothetical device known as a time machine. Time travel is a widely-recognized concept in philosophy and fiction. The idea of a time machine was popularized by H. G. Wells‘ 1895 novel The Time Machine.

It is uncertain if time travel to the past is physically possible. Forward time travel, outside the usual sense of the perception of time, is an extensively-observed phenomenon and well-understood within the framework of special relativity and general relativity. However, making one body advance or delay more than a few milliseconds compared to another body is not feasible with current technology.[1] As for backwards time travel, it is possible to find solutions in general relativity that allow for it, but the solutions require conditions that may not be physically possible. Traveling to an arbitrary point in spacetime has a very limited support in theoretical physics, and usually only connected with quantum mechanics or wormholes, also known as Einstein-Rosen bridges.

History of the time travel concept

Some ancient myths depict a character skipping forward in time. In Hindu mythology, the Mahabharata mentions the story of King Raivata Kakudmi, who travels to heaven to meet the creator Brahma and is surprised to learn when he returns to Earth that many ages have passed.[2] The Buddhist Pāli Canon mentions the relativity of time. The Payasi Sutta tells of one of the Buddha‘s chief disciples, Kumara Kassapa, who explains to the skeptic Payasi that time in the Heavens passes differently than on Earth.[3] The Japanese tale of “Urashima Tarō“,[4] first described in the Nihongi (720) tells of a young fisherman named Urashima Taro who visits an undersea palace. After three days, he returns home to his village and finds himself 300 years in the future, where he has been forgotten, his house is in ruins, and his family has died.[5] In Jewish tradition, the 1st-century BC scholar Honi ha-M’agel is said to have fallen asleep and slept for seventy years. When waking up he returned home but found none of the people he knew, and no one believed his claims of who he was.[6]

Shift to science fiction

Early science fiction stories feature characters who sleep for years and awaken in a changed society, or are transported to the past through supernatural means. Among them L’An 2440, rêve s’il en fût jamais (1770) by Louis-Sébastien MercierRip Van Winkle (1819) by Washington IrvingLooking Backward (1888) by Edward Bellamy, and When the Sleeper Awakes (1899) by H.G. Wells. Prolonged sleep, like the more familiar time machine, is used as a means of time travel in these stories.[7]

The earliest work about backwards time travel is uncertain. Samuel Madden‘s Memoirs of the Twentieth Century (1733) is a series of letters from British ambassadors in 1997 and 1998 to diplomats in the past, conveying the political and religious conditions of the future.[8]:95–96 Because the narrator receives these letters from his guardian angel, Paul Alkon suggests in his book Origins of Futuristic Fiction that “the first time-traveler in English literature is a guardian angel.”[8]:85 Madden does not explain how the angel obtains these documents, but Alkon asserts that Madden “deserves recognition as the first to toy with the rich idea of time-travel in the form of an artifact sent backward from the future to be discovered in the present.”[8]:95–96 In the science fiction anthology Far Boundaries (1951), editor August Derleth claims that an early short story about time travel is Missing One’s Coach: An Anachronism, written for the Dublin Literary Magazine[9] by an anonymous author in 1838.[10]:3 While the narrator waits under a tree for a coachto take him out of Newcastle, he is transported back in time over a thousand years. He encounters the Venerable Bede in a monastery and explains to him the developments of the coming centuries. However, the story never makes it clear whether these events are real or a dream.[10]:11–38 Another early work about time travel is The Forebears of Kalimeros: Alexander, son of Philip of Macedon by Alexander Veltmanpublished in 1836.[11]

Mr. and Mrs. Fezziwig dance in a vision shown to Scrooge by the Ghost of Christmas Past.

Charles Dickens‘s A Christmas Carol (1843) has early depictions of time travel in both directions, as the protagonist, Ebenezer Scrooge, is transported to Christmases past and future. Other stories employ the same template, where a character naturally goes to sleep, and upon waking up find themselves in a different time.[12] A clearer example of backward time travel is found in the popular 1861 book Paris avant les hommes (Paris before Men) by the French botanist and geologist Pierre Boitard, published posthumously. In this story, the protagonist is transported to the prehistoric past by the magic of a “lame demon” (a French pun on Boitard’s name), where he encounters a Plesiosaur and an apelike ancestor and is able to interact with ancient creatures.[13] Edward Everett Hale‘s “Hands Off” (1881) tells the story of an unnamed being, possibly the soul of a person who has recently died, who interferes with ancient Egyptian history by preventing Joseph‘s enslavement. This may have been the first story to feature an alternate history created as a result of time travel.[14]:54

Early time machines

One of the first stories to feature time travel by means of a machine is “The Clock that Went Backward” by Edward Page Mitchell,[15] which appeared in the New York Sun in 1881. However, the mechanism borders on fantasy. An unusual clock, when wound, runs backwards and transports people nearby back in time. The author does not explain the origin or properties of the clock.[14]:55 Enrique Gaspar y Rimbau‘s El Anacronópete (1887) may have been the first story to feature a vessel engineered to travel through time.[16][17] Andrew Sawyer has commented that the story “does seem to be the first literary description of a time machine noted so far”, adding that “Edward Page Mitchell’s story ‘The Clock That Went Backward‘ (1881) is usually described as the first time-machine story, but I’m not sure that a clock quite counts.”[18]H. G. Wells‘s The Time Machine (1895) popularized the concept of time travel by mechanical means.[19]

Time travel in physics

Some theories, most notably special and general relativity, suggest that suitable geometries of spacetime or specific types of motion in space might allow time travel into the past and future if these geometries or motions were possible.[20]:499 In technical papers, physicists discuss the possibility of closed timelike curves, which are world lines that form closed loops in spacetime, allowing objects to return to their own past. There are known to be solutions to the equations of general relativity that describe spacetimes which contain closed timelike curves, such as Gödel spacetime, but the physical plausibility of these solutions is uncertain.

Many in the scientific community believe that backward time travel is highly unlikely. Any theory that would allow time travel would introduce potential problems of causality.[21] The classic example of a problem involving causality is the “grandfather paradox“: what if one were to go back in time and kill one’s own grandfather before one’s father was conceived? Some physicists, such as Novikov and Deutsch, suggested that these sorts of temporal paradoxes can be avoided through the Novikov self-consistency principle or to a variation of the many-worlds interpretation with interacting worlds.[22]

General relativity

Time travel to the past is theoretically possible in certain general relativity spacetime geometries that permit traveling faster than the speed of light, such as cosmic strings, transversable wormholes, and Alcubierre drive.[23][24]:33–130 The theory of general relativity does suggest a scientific basis for the possibility of backward time travel in certain unusual scenarios, although arguments from semiclassical gravitysuggest that when quantum effects are incorporated into general relativity, these loopholes may be closed.[25] These semiclassical arguments led Stephen Hawking to formulate the chronology protection conjecture, suggesting that the fundamental laws of nature prevent time travel,[26] but physicists cannot come to a definite judgment on the issue without a theory of quantum gravity to join quantum mechanics and general relativity into a completely unified theory.[27][28]:150

Different spacetime geometries

The theory of general relativity describes the universe under a system of field equations that determine the metric, or distance function, of spacetime. There exist exact solutions to these equations that include closed time-like curves, which are world lines that intersect themselves; some point in the causal future of the world line is also in its causal past, a situation which is akin to time travel. Such a solution was first proposed by Kurt Gödel, a solution known as the Gödel metric, but his (and others’) solution requires the universe to have physical characteristics that it does not appear to have,[20]:499 such as rotation and lack of Hubble expansion. Whether general relativity forbids closed time-like curves for all realistic conditions is still being researched.[29]

Wormholes

Wormholes are a hypothetical warped spacetime which are permitted by the Einstein field equations of general relativity.[30]:100 A proposed time-travel machine using a traversable wormhole would hypothetically work in the following way: One end of the wormhole is accelerated to some significant fraction of the speed of light, perhaps with some advanced propulsion system, and then brought back to the point of origin. Alternatively, another way is to take one entrance of the wormhole and move it to within the gravitational field of an object that has higher gravity than the other entrance, and then return it to a position near the other entrance. For both of these methods, time dilation causes the end of the wormhole that has been moved to have aged less, or become “younger”, than the stationary end as seen by an external observer; however, time connects differently through the wormhole than outside it, so that synchronized clocks at either end of the wormhole will always remain synchronized as seen by an observer passing through the wormhole, no matter how the two ends move around.[20]:502 This means that an observer entering the “younger” end would exit the “older” end at a time when it was the same age as the “younger” end, effectively going back in time as seen by an observer from the outside. One significant limitation of such a time machine is that it is only possible to go as far back in time as the initial creation of the machine;[20]:503 in essence, it is more of a path through time than it is a device that itself moves through time, and it would not allow the technology itself to be moved backward in time.

According to current theories on the nature of wormholes, construction of a traversable wormhole would require the existence of a substance with negative energy, often referred to as “exotic matter“. More technically, the wormhole spacetime requires a distribution of energy that violates various energy conditions, such as the null energy condition along with the weak, strong, and dominant energy conditions. However, it is known that quantum effects can lead to small measurable violations of the null energy condition,[30]:101 and many physicists believe that the required negative energy may actually be possible due to the Casimir effect in quantum physics.[31] Although early calculations suggested a very large amount of negative energy would be required, later calculations showed that the amount of negative energy can be made arbitrarily small.[32]

In 1993, Matt Visser argued that the two mouths of a wormhole with such an induced clock difference could not be brought together without inducing quantum field and gravitational effects that would either make the wormhole collapse or the two mouths repel each other.[33] Because of this, the two mouths could not be brought close enough for causality violation to take place. However, in a 1997 paper, Visser hypothesized that a complex “Roman ring” (named after Tom Roman) configuration of an N number of wormholes arranged in a symmetric polygon could still act as a time machine, although he concludes that this is more likely a flaw in classical quantum gravity theory rather than proof that causality violation is possible.[34]

Other approaches based on general relativity

Another approach involves a dense spinning cylinder usually referred to as a Tipler cylinder, a GR solution discovered by Willem Jacob van Stockum[35] in 1936 and Kornel Lanczos[36] in 1924, but not recognized as allowing closed timelike curves[37]:21 until an analysis by Frank Tipler[38] in 1974. If a cylinder is infinitely long and spins fast enough about its long axis, then a spaceship flying around the cylinder on a spiral path could travel back in time (or forward, depending on the direction of its spiral). However, the density and speed required is so great that ordinary matter is not strong enough to construct it. A similar device might be built from a cosmic string, but none are known to exist, and it does not seem to be possible to create a new cosmic string. Physicist Ronald Mallett is attempting to recreate the conditions of a rotating black hole with ring lasers, in order to bend spacetime and allow for time travel.[39]

A more fundamental objection to time travel schemes based on rotating cylinders or cosmic strings has been put forward by Stephen Hawking, who proved a theorem showing that according to general relativity it is impossible to build a time machine of a special type (a “time machine with the compactly generated Cauchy horizon”) in a region where the weak energy condition is satisfied, meaning that the region contains no matter with negative energy density (exotic matter). Solutions such as Tipler’s assume cylinders of infinite length, which are easier to analyze mathematically, and although Tipler suggested that a finite cylinder might produce closed timelike curves if the rotation rate were fast enough,[37]:169 he did not prove this. But Hawking points out that because of his theorem, “it can’t be done with positive energy density everywhere! I can prove that to build a finite time machine, you need negative energy.”[28]:96 This result comes from Hawking’s 1992 paper on the chronology protection conjecture, where he examines “the case that the causality violations appear in a finite region of spacetime without curvature singularities” and proves that “there will be a Cauchy horizon that is compactly generated and that in general contains one or more closed null geodesics which will be incomplete. One can define geometrical quantities that measure the Lorentz boost and area increase on going round these closed null geodesics. If the causality violation developed from a noncompact initial surface, the averaged weak energy condition must be violated on the Cauchy horizon.”[26] This theorem does not rule out the possibility of time travel by means of time machines with the non-compactly generated Cauchy horizons (such as the Deutsch-Politzer time machine) or in regions which contain exotic matter, which would be used for traversable wormholes or the Alcubierre drive.

Quantum physics

No-communication theorem

When a signal is sent from one location and received at another location, then as long as the signal is moving at the speed of light or slower, the mathematics of simultaneity in the theory of relativity show that all reference frames agree that the transmission-event happened before the reception-event. When the signal travels faster than light, it is received before it is sent, in all reference frames.[40] The signal could be said to have moved backward in time. This hypothetical scenario is sometimes referred to as a tachyonic antitelephone.[41]

Quantum-mechanical phenomena such as quantum teleportation, the EPR paradox, or quantum entanglement might appear to create a mechanism that allows for faster-than-light (FTL) communication or time travel, and in fact some interpretations of quantum mechanics such as the Bohm interpretation presume that some information is being exchanged between particles instantaneously in order to maintain correlations between particles.[42] This effect was referred to as “spooky action at a distance” by Einstein.

Nevertheless, the fact that causality is preserved in quantum mechanics is a rigorous result in modern quantum field theories, and therefore modern theories do not allow for time travel or FTL communication. In any specific instance where FTL has been claimed, more detailed analysis has proven that to get a signal, some form of classical communication must also be used.[43] The no-communication theorem also gives a general proof that quantum entanglement cannot be used to transmit information faster than classical signals.

Interacting many-worlds interpretation

A variation of Everett’s many-worlds interpretation (MWI) of quantum mechanics provides a resolution to the grandfather paradox that involves the time traveler arriving in a different universe than the one they came from; it’s been argued that since the traveler arrives in a different universe’s history and not their own history, this is not “genuine” time travel.[44] The accepted many-worlds interpretation suggests that all possible quantum events can occur in mutually exclusive histories.[45] However, some variations allow different universes to interact. This concept is most often used in science-fiction, but some physicists such as David Deutsch have suggested that a time traveler should end up in a different history than the one he started from.[46][47] On the other hand, Stephen Hawking has argued that even if the MWI is correct, we should expect each time traveler to experience a single self-consistent history, so that time travelers remain within their own world rather than traveling to a different one.[48] The physicist Allen Everett argued that Deutsch’s approach “involves modifying fundamental principles of quantum mechanics; it certainly goes beyond simply adopting the MWI”. Everett also argues that even if Deutsch’s approach is correct, it would imply that any macroscopic object composed of multiple particles would be split apart when traveling back in time through a wormhole, with different particles emerging in different worlds.[22]

Experimental results

Certain experiments carried out give the impression of reversed causality, but fail to show it under closer examination.

The delayed choice quantum eraser experiment performed by Marlan Scully involves pairs of entangled photons that are divided into “signal photons” and “idler photons”, with the signal photons emerging from one of two locations and their position later measured as in the double-slit experiment. Depending on how the idler photon is measured, the experimenter can either learn which of the two locations the signal photon emerged from or “erase” that information. Even though the signal photons can be measured before the choice has been made about the idler photons, the choice seems to retroactively determine whether or not an interference pattern is observed when one correlates measurements of idler photons to the corresponding signal photons. However, since interference can only be observed after the idler photons are measured and they are correlated with the signal photons, there is no way for experimenters to tell what choice will be made in advance just by looking at the signal photons, only by gathering classical information from the entire system; thus causality is preserved.[49]

The experiment of Lijun Wang might also show causality violation since it made it possible to send packages of waves through a bulb of caesium gas in such a way that the package appeared to exit the bulb 62 nanoseconds before its entry, but a wave package is not a single well-defined object but rather a sum of multiple waves of different frequencies (see Fourier analysis), and the package can appear to move faster than light or even backward in time even if none of the pure waves in the sum do so. This effect cannot be used to send any matter, energy, or information faster than light,[50] so this experiment is understood not to violate causality either.

The physicists Günter Nimtz and Alfons Stahlhofen, of the University of Koblenz, claim to have violated Einstein’s theory of relativity by transmitting photons faster than the speed of light. They say they have conducted an experiment in which microwave photons traveled “instantaneously” between a pair of prisms that had been moved up to 3 ft (0.91 m) apart, using a phenomenon known as quantum tunneling. Nimtz told New Scientist magazine: “For the time being, this is the only violation of special relativity that I know of.” However, other physicists say that this phenomenon does not allow information to be transmitted faster than light. Aephraim Steinberg, a quantum optics expert at the University of Toronto, Canada, uses the analogy of a train traveling from Chicago to New York, but dropping off train cars at each station along the way, so that the center of the train moves forward at each stop; in this way, the speed of the center of the train exceeds the speed of any of the individual cars.[51]

Shengwang Du claims in a peer-reviewed journal to have observed single photons’ precursors, saying that they travel no faster than c in a vacuum. His experiment involved slow light as well as passing light through a vacuum. He generated two single photons, passing one through rubidium atoms that had been cooled with a laser (thus slowing the light) and passing one through a vacuum. Both times, apparently, the precursors preceded the photons’ main bodies, and the precursor traveled at c in a vacuum. According to Du, this implies that there is no possibility of light traveling faster than c and, thus, no possibility of violating causality.[52]

Absence of time travelers from the future

Krononauts

The absence of time travelers from the future is a variation of the Fermi paradox. As the absence of extraterrestrial visitors does not prove they do not exist, so the absence of time travelers fails to prove time travel is physically impossible; it might be that time travel is physically possible but is never developed or is cautiously used. Carl Sagan once suggested the possibility that time travelers could be here but are disguising their existence or are not recognized as time travelers.[27] Some versions of general relativity suggest that time travel might only be possible in a region of spacetime that is warped a certain way, and hence time travelers would not be able to travel back to earlier regions in spacetime, before this region existed. Stephen Hawking stated that this would explain why the world has not already been overrun by “tourists from the future.”[48]

Several experiments have been carried out to try to entice future humans, who might invent time travel technology, to come back and demonstrate it to people of the present time. Events such as Perth’s Destination Day or MIT‘s Time Traveler Convention heavily publicized permanent “advertisements” of a meeting time and place for future time travelers to meet.[53] In 1982, a group in Baltimore, Maryland, identifying itself as the Krononauts, hosted an event of this type welcoming visitors from the future.[54][55] These experiments only stood the possibility of generating a positive result demonstrating the existence of time travel, but have failed so far—no time travelers are known to have attended either event. Some versions of the many-worlds interpretation can be used to suggest that future humans have traveled back in time, but have traveled back to the meeting time and place in a parallel universe.[56]

Forward time travel in physics

Time dilation

Transversal time dilation. The blue dots represent a pulse of light. Each pair of dots with light “bouncing” between them is a clock. For each group of clocks, the other group appears to be ticking more slowly, because the moving clock’s light pulse has to travel a larger distance than the stationary clock’s light pulse. That is so, even though the clocks are identical and their relative motion is perfectly symmetric.

There is a great deal of observable evidence for time dilation in special relativity[57] and gravitational time dilation in general relativity,[58][59][60] for example in the famous and easy-to-replicate observation of atmospheric muon decay.[61][62][63] The theory of relativity states that the speed of light is invariant for all observers in any frame of reference; that is, it is always the same. Time dilation is a direct consequence of the invariance of the speed of light.[63] Time dilation may be regarded in a limited sense as “time travel into the future”: a person may use time dilation so that a small amount of proper time passes for them, while a large amount of proper time passes elsewhere. This can be achieved by traveling at relativistic speeds or through the effects of gravity.[64]

For two identical clocks moving relative to each other without accelerating, each clock measures the other to be ticking slower. This is possible due to the relativity of simultaneity. However, the symmetry is broken if one clock accelerates, allowing for less proper time to pass for one clock than the other. The twin paradox describes this: one twin remains on Earth, while the other undergoes acceleration to relativistic speed as they travel into space, turn around, and travel back to Earth; the traveling twin ages less than the twin who stayed on Earth, because of the time dilation experienced during their acceleration. General relativity treats the effects of acceleration and the effects of gravity as equivalent, and shows that time dilation also occurs in gravity wells, with a clock deeper in the well ticking more slowly; this effect is taken into account when calibrating the clocks on the satellites of the Global Positioning System, and it could lead to significant differences in rates of aging for observers at different distances from a large gravity well such as a black hole.[24]:33–130

A time machine that utilizes this principle might be, for instance, a spherical shell with a diameter of 5 meters and the mass of Jupiter. A person at its center will travel forward in time at a rate four times that of distant observers. Squeezing the mass of a large planet into such a small structure is not expected to be within humanity’s technological capabilities in the near future.[24]:76–140 With current technologies, it is only possible to cause a human traveler to age less than companions on Earth by a very small fraction of a second, the current record being about one-fiftieth of a second for the cosmonaut Sergei Krikalev.[65]

Philosophy

Philosophers have discussed the nature of time since at least the time of ancient Greece; for example, Parmenides presented the view that time is an illusion. Centuries later, Isaac Newton supported the idea of absolute time, while his contemporary Gottfried Wilhelm Leibniz maintained that time is only a relation between events and it cannot be expressed independently. The latter approach eventually gave rise to the spacetime of relativity.[66]

Presentism vs. eternalism

Many philosophers have argued that relativity implies eternalism, the idea that the past and future exist in a real sense, not only as changes that occurred or will occur to the present.[67] Philosopher of science Dean Rickles disagrees with some qualifications, but notes that “the consensus among philosophers seems to be that special and general relativity are incompatible with presentism.”[68] Some philosophers view time as a dimension equal to spatial dimensions, that future events are “already there” in the same sense different places exist, and that there is no objective flow of time; however, this view is disputed.[69]

The bar and ring paradox is an example of the relativity of simultaneity. Both ends of the bar pass through the ring simultaneously in the rest frame of the ring (left), but the ends of the bar pass one after the other in the rest frame of the bar (right).

Presentism is a school of philosophy that holds that the future and the past exist only as changes that occurred or will occur to the present, and they have no real existence of their own. In this view, time travel is impossible because there is no future or past to travel to.[67] Keller and Nelson have argued that even if past and future objects do not exist, there can still be definite truths about past and future events, and thus it is possible that a future truth about a time traveler deciding to travel back to the present date could explain the time traveler’s actual appearance in the present;[70] these views are contested by some authors.[71]

Presentism in classical spacetime deems that only the present exists; this is not reconcilable with special relativity, shown in the following example: Alice and Bob are simultaneous observers of event O. For Alice, some event E is simultaneous with O, but for Bob, event E is in the past or future. Therefore, Alice and Bob disagree about what exists in the present, which contradicts classical presentism. “Here-now presentism” attempts to reconcile this by only acknowledging the time and space of a single point; this is unsatisfactory because objects coming and going from the “here-now” alternate between real and unreal, in addition to the lack of a privileged “here-now” that would be the “real” present. “Relativized presentism” acknowledges that there are infinite frames of reference, each of them has a different set of simultaneous events, which makes it impossible to distinguish a single “real” present, and hence either all events in time are real—blurring the difference between presentism and eternalism—or each frame of reference exists in its own reality. Options for presentism in special relativity appear to be exhausted, but Gödel and others suspect presentism may be valid for some forms of general relativity.[72] Generally, the idea of absolute time and space is considered incompatible with general relativity; there is no universal truth about the absolute position of events which occur at different times, and thus no way to determine which point in space at one time is at the universal “same position” at another time,[73] and all coordinate systems are on equal footing as given by the principle of diffeomorphism invariance.[74]

The grandfather paradox

A common objection to the idea of traveling back in time is put forth in the grandfather paradox or the argument of auto-infanticide.[75] If one were able to go back in time, inconsistencies and contradictions would ensue if the time traveler were to change anything; there is a contradiction if the past becomes different from the way it is.[76][77] The paradox is commonly described with a person who travels to the past and kills their own grandfather, prevents the existence of their father or mother, and therefore their own existence.[27] Philosophers question whether these paradoxes make time travel impossible. Some philosophers answer the paradoxes by arguing that it might be the case that backward time travel could be possible but that it would be impossible to actually change the past in any way,[78] an idea similar to the proposed Novikov self-consistency principle in physics.

Ontological paradox

Compossibility

According to the philosophical theory of compossibility, what can happen, for example in the context of time travel, must be weighed against the context of everything relating to the situation. If the past is a certain way, it’s not possible for it to be any other way. What can happen when a time traveler visits the past is limited to what did happen, in order to prevent logical contradictions.[79]

Self-consistency principle

The Novikov self-consistency principle, named after Igor Dmitrievich Novikov, states that any actions taken by a time traveler or by an object that travels back in time were part of history all along, and therefore it is impossible for the time traveler to “change” history in any way. The time traveler’s actions may be the cause of events in their own past though, which leads to the potential for circular causation, sometimes called a predestination paradox,[80] ontological paradox,[81] or bootstrap paradox.[81][82] The term bootstrap paradox was popularized by Robert A. Heinlein‘s story “By His Bootstraps“.[83] The Novikov self-consistency principle proposes that the local laws of physics in a region of spacetime containing time travelers cannot be any different from the local laws of physics in any other region of spacetime.[84]

The philosopher Kelley L. Ross argues in “Time Travel Paradoxes”[85] that in a scenario involving a physical object whose world-line or history forms a closed loop in time there can be a violation of the second law of thermodynamics. Ross uses “Somewhere in Time” as an example of such an ontological paradox, where a watch is given to a person, and 60 years later the same watch is brought back in time and given to the same character. Ross states that entropy of the watch will increase, and the watch carried back in time will be more worn with each repetition of its history. The second law of thermodynamics is understood by modern physicists to be a statistical law, so decreasing entropy or non-increasing entropy are not impossible, just improbable. Additionally, entropy statistically increases in systems which are isolated, so non-isolated systems, such as an object, that interact with the outside world, can become less worn and decrease in entropy, and it’s possible for an object whose world-line forms a closed loop to be always in the same condition in the same point of its history.[24]:23

Daniel Greenberger and Karl Svozil proposed that quantum theory gives a model for time travel where the past must be self-consistent.[86][87]

In fiction

Time travel themes in science fiction and the media can generally be grouped into three categories: immutable timeline; mutable timeline; and alternate histories, as in the interacting-many-worlds interpretation.[88][89][90] Frequently in fiction, timeline is used to refer to all physical events in history, so that in time travel stories where events can be changed, the time traveler is described as creating a new or altered timeline.[91] This usage is distinct from the use of the term timeline to refer to a type of chart that illustrates a particular series of events, and the concept is also distinct from a world line, a term from Einstein’s theory of relativity which refers to the entire history of a single object.

Leave a Reply

%d bloggers like this: